37 research outputs found

    Acropolis: A Fast Protoyping Robotic Application

    Get PDF
    Acropolis is an open source middleware robotic framework for fast software prototyping and reuse of program codes. It is made up of a core software and a collection of several extension modules called plugins. Each plugin encapsulates a specific functionality needed for robotic applications. To design a robot behavior, a circuit Of the involved plugins is built with a graphical user interface. A high degree of decoupling between components and a graph-based representation allow the user to build complex robot behaviors with minimal need for code writing. In addition, the Acropolis core is hardware platform independent. Well-known design patterns and layered software architecture are its key features. Through the description of three applications, we illustrate some of its usability

    A biomechanical assessment of modular and monoblock revision hip implants using FE analysis and strain gage measurements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The bone loss associated with revision surgery or pathology has been the impetus for developing modular revision total hip prostheses. Few studies have assessed these modular implants quantitatively from a mechanical standpoint.</p> <p>Methods</p> <p>Three-dimensional finite element (FE) models were developed to mimic a hip implant alone (Construct A) and a hip implant-femur configuration (Construct B). Bonded contact was assumed for all interfaces to simulate long-term bony ongrowth and stability. The hip implants modeled were a Modular stem having two interlocking parts (Zimmer Modular Revision Hip System, Zimmer, Warsaw, IN, USA) and a Monoblock stem made from a single piece of material (Stryker Restoration HA Hip System, Stryker, Mahwah, NJ, USA). Axial loads of 700 and 2000 N were applied to Construct A and 2000 N to Construct B models. Stiffness, strain, and stress were computed. Mechanical tests using axial loads were used for Construct A to validate the FE model. Strain gages were placed along the medial and lateral side of the hip implants at 8 locations to measure axial strain distribution.</p> <p>Results</p> <p>There was approximately a 3% average difference between FE and experimental strains for Construct A at all locations for the Modular implant and in the proximal region for the Monoblock implant. FE results for Construct B showed that both implants carried the majority (Modular, 76%; Monoblock, 66%) of the 2000 N load relative to the femur. FE analysis and experiments demonstrated that the Modular implant was 3 to 4.5 times mechanically stiffer than the Monoblock due primarily to geometric differences.</p> <p>Conclusions</p> <p>This study provides mechanical characteristics of revision hip implants at sub-clinical axial loads as an initial predictor of potential failure.</p

    Titanium addition influences antibacterial activity of bioactive glass coatings on metallic implants

    Get PDF
    © 2017 The Authors In an attempt to combat the possibility of bacterial infection and insufficient bone growth around metallic, surgical implants, bioactive glasses may be employed as coatings. In this work, silica-based and borate-based glass series were synthesized for this purpose and subsequently characterized in terms of antibacterial behavior, solubility and cytotoxicity. Borate-based glasses were found to exhibit significantly superior antibacterial properties and increased solubility compared to their silica-based counterparts, with BRT0 and BRT3 (borate-based glasses with 0 and 15 mol% of titanium dioxide incorporated, respectively) outperforming the remainder of the glasses, both borate and silicate based, in these respects. Atomic Absorption Spectroscopy confirmed the release of zinc ions (Zn2+), which has been linked to the antibacterial abilities of glasses SRT0, BRT0 and BRT3, with inhibition effectively achieved at concentrations lower than 0.7 ppm. In vitro cytotoxicity studies using MC3T3-E1 osteoblasts confirmed that cell proliferation was affected by all glasses in this study, with decreased proliferation attributed to a faster release of sodium ions over calcium ions in both glass series, factor known to slow cell proliferation in vitro

    Effect of TiO2 Doping on Degradation Rate, Microstructure and Strength of Borate Bioactive Glass Scaffolds

    Get PDF
    A titanium-containing borate glass series based on the system (52-X) B2O3–12CaO–6P2O5–14Na2O–16ZnO-XTiO2 with X varying from 0, 5 and 15 mol% of TiO2 incorporated, identified as BRT0, BRT1 and BRT3, respectively, were used in this study. Scaffolds (pore sizes, 165–230 μm and porosity, 53.51–69.51%) were prepared using a polymer foam replication technique. BRT3 scaffolds exhibited higher compressive strength (7.16 ± 0.22 MPa) when compared to BRT0 (6.02 ± 0.47 MPa) and BRT1 (5.65 ± 0.28 MPa) scaffolds with lower, or no, TiO2 content. The solubility of the scaffolds decreased as the TiO2 content increased up to 15 mol% when samples of each scaffold were immersed in DI water and the pH of all these extracts went up from 7.0 to 8.5 in 30 days. The cumulative ion release from the scaffolds showed significant difference with respect to TiO2 content; addition of 5 mol% TiO2 at the expense of borate (B2O3) decreased the ion release remarkably. Furthermore, it was found that for all three scaffolds, cumulative ion release increased with incubation time. The results indicate that the degradation rates and compressive strengths of borate bioactive glass scaffolds could be controlled by varying the amount of TiO2 incorporated, confirming their potential as scaffolds in TKA and rTKA

    The role of poly(methyl methacrylate) in management of bone loss and infection in revision total knee arthroplasty: A review

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Poly(methyl methacrylate) (PMMA) is widely used in joint arthroplasty to secure an implant to the host bone. Complications including fracture, bone loss and infection might cause failure of total knee arthroplasty (TKA), resulting in the need for revision total knee arthroplasty (rTKA). The goals of this paper are: (1) to identify the most common complications, outside of sepsis, arising from the application of PMMA following rTKA, (2) to discuss the current applications and drawbacks of employing PMMA in managing bone loss, (3) to review the role of PMMA in addressing bone infection following complications in rTKA. Papers published between 1970 to 2018 have been considered through searching in Springer, Google Scholar, IEEE Xplore, Engineering village, PubMed and weblinks. This review considers the use of PMMA as both a bone void filler and as a spacer material in two-stage revision. To manage bone loss, PMMA is widely used to fill peripheral bone defects whose depth is less than 5 mm and covers less than 50% of the bone surface. Treatment of bone infections with PMMA is mainly for two-stage rTKA where antibiotic-loaded PMMA is inserted as a spacer. This review also shows that using antibiotic-loaded PMMA might cause complications such as toxicity to surrounding tissue, incomplete antibiotic agent release from the PMMA, roughness and bacterial colonization on the surface of PMMA. Although PMMA is the only commercial bone cement used in rTKA, there are concerns associated with using PMMA following rTKA. More research and clinical studies are needed to address these complications

    Comparative Evaluation of Two Glass Polyalkenoate Cements: An in Vivo Pilot Study using a Sheep Model

    Get PDF
    Poly(methyl methacrylate) (PMMA) is used to manage bone loss in revision total knee arthroplasty (rTKA). However, the application of PMMA has been associated with complications such as volumetric shrinkage, necrosis, wear debris, and loosening. Glass polyalkenoate cements (GPCs) have potential bone cementation applications. Unlike PMMA, GPC does not undergo volumetric shrinkage, adheres chemically to bone, and does not undergo an exothermic setting reaction. In this study, two different compositions of GPCs (GPCA and GPCB), based on the patented glass system SiO2-CaO-SrO-P2O5-Ta2O5, were investigated. Working and setting times, pH, ion release, compressive strength, and cytotoxicity of each composition were assessed, and based on the results of these tests, three sets of samples from GPCA were implanted into the distal femur and proximal tibia of three sheep (alongside PMMA as control). Clinical CT scans and micro-CT images obtained at 0, 6, and 12 weeks revealed the varied radiological responses of sheep bone to GPCA. One GPCA sample (implanted in the sheep for 12 weeks) was characterized with no bone resorption. Furthermore, a continuous bone–cement interface was observed in the CT images of this sample. The other implanted GPCA showed a thin radiolucent border at six weeks, indicating some bone resorption occurred. The third sample showed extensive bone resorption at both six and 12 weeks. Possible speculative factors that might be involved in the varied response can be: excessive Zn2+ ion release, low pH, mixing variability, and difficulty in inserting the samples into different parts of the sheep bone

    Characterization of Silica-Based and Borate-Based, Titanium-Containing Bioactive Glasses for Coating Metallic Implants

    Get PDF
    Bioactive glasses have found applications in diverse fields, including orthopedics and dentistry, where they have been utilized for the fixation of bone and teeth and as scaffolds for drug delivery. The present work outlines the characterization of two novel titanium-containing glass series, one silica-based and one borate-based. For the silica-based series, titanium is added at the expense of silicon dioxide whereas for the borate-based series, it is added at the expense of boron oxide as confirmed by Energy Dispersive Spectroscopy. Amorphous structures are obtained for silica-based glass at 15 mol% TiO2 and for borate-based glasses at 0 mol% and 5 mol%, with low crystal peak intensities exhibited within the remaining glasses. MAS-NMR proves the role of P2O5 as a network modifier for both glass series by evidencing only Q0 structures (and Q1 structures for the silica-based glasses with crystal structures), whereas FTIR proves that Ti acted as a network modifier in the glass as there was an absence of peaks assignable to titanium bonding. This implies that the two glass series will degrade in-situ and release ions at the site of implantation. Additionally, thermal data sourced from these glasses indicate processing windows which make them suitable for enameling onto implants, with the borate-based series exhibiting greater processing windows over the silica-based series, hence making the borate glasses more suitable for coating metallic implants compared to their silica-based counterparts

    In Vivo Analysis of a Proprietary Glass-Based Adhesive for Sternal Fixation and Stabilization using Rabbit and Sheep Models

    Get PDF
    Wire cerclage remains the standard method of care for sternal fixation, following median sternotomy, despite being beset with complications. An emerging treatment option has been to augment the wires with an adhesive. A patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) has been used to formulate GPC+, a glass polyalkenoate cement (GPC), by mixing it with poly(acrylic) acid (PAA) and de-ionized water. In a human cadaver study, this material, when applied with wire cerclage, was able to significantly reduce sternal instability. However, the material has yet to be tested in pertinent animal models. Here, after a series of physical and mechanical tests to confirm suitability of the experimental material for implantation, three samples of GPC+ were implanted in either the tibia or femur of three different rabbits, alongside sham defects, for two different time modalities. A further seven samples of GPC+ and one poly(methyl methacrylate) control (PMMA) were implanted in either the tibia or femur of two different sheep. The sheep containing the PMMA was sacrificed at 8 weeks and the other at 16 weeks, to evaluate time dependent biological response. Upon sacrifice, microCT images were acquired and histology slides prepared for analysis. All three GPC+ samples implanted in the rabbit model, for the two time modalities, were characterized by minimal bone resorption along with a mild inflammatory response. Five of the seven GPC+ materials implanted in the sheep model (all three implanted for 8 weeks and two of those implanted for 16 weeks) were associated with mild to moderate immune response, comparable to that observed with PMMA, as well as mild bone resorption. The remaining two GPC + materials (implanted in the sheep model for 16 weeks) exhibited no bone resorption or inflammatory response and appeared to stimulate increased bone density at the implant site. These results suggest that GPC + can be a viable bone adhesive for use in hard tissue applications such as sternal fixation and stabilization. [Figure not available: see fulltext.

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    corecore